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Abstract. The analysis of microwave observations over land to determine atmo-
spheric and surface parameters is still limited due to the complexity of the inverse
problem. Neural network techniques have already proved successful as the basis
of efficient retrieval methods for nonlinear cases; however, first guess estimates,
which are used in variational assimilation methods to avoid problems of solution
nonuniqueness or other forms of solution irregularity, have up to now not been
used with neural network methods. In this study, a neural network approach is
developed that uses a first guess. Conceptual bridges are established between the
neural network and variational assimilation methods. The new neural method
retrieves the surface skin temperature, the integrated water vapor content, the
cloud liquid water path and the microwave surface emissivities between 19 and 85
GHz over land from Special Sensor Microwave Imager observations. The retrieval,
in parallel, of all these quantities improves the results for consistancy reasons. A
database to train the neural network is calculated with a radiative transfer model
and a global collection of coincident surface and atmospheric parameters extracted
from the National Center for Environmental Prediction reanalysis, from the Inter-
national Satellite Cloud Climatology Project data, and from microwave emissivity
atlases previously calculated. The results of the neural network inversion are very
encouraging. The theoretical RMS error of the surface temperature retrieval over
the globe is 1.3 K in clear-sky conditions and 1.6 K in cloudy scenes. Water vapor
is retrieved with a theoretical RMS error of 3.8 kg m™ in clear conditions and
4.9 kg m~? in cloudy situations. The theoretical RMS error in cloud liquid water
path is 0.08 kg m~2. The surface emissivities are retrieved with an accuracy of
better than 0.008 in clear conditions and 0.010 in cloudy conditions. Microwave
land surface temperature retrieval presents a very attractive complement to the
infrared estimates in cloudy areas: time record of land surface temperature will be
produced.

1. Introduction

Even after 20 years of global microwave satellite ob-
servations, the use of microwave data over land for the
retrieval of atmospheric and surface parameters is still
very limited. While the ocean surface has a low mi-
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crowave emissivity ~0.5 that produces good contrast
of atmospheric phenomena against a low brightness
temperature background, the land surface emissivities
are usually close to unity, making atmospheric features
much more difficult to identify against a higher bright-
ness temperature background. In addition, the land
surface emissivities are not only variable in space and
time but also very complex to model since they are mod-
ulated by vegetation, topography, flooding, and snow,
among other factors. Until recently, no estimates of the
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microwave land emissivities over the globe were avail-
able at a spatial resolution compatible with satellite ob-
servations.

Only a few efforts have been directed toward the esti-
mation of atmospheric parameters and surface tempera-
ture from microwave observations over land. Jones and
Vonder Haar [1990] proposed a method to retrieve cloud
liquid water path, with a more recent development by
Greenwald et al. [1997], using Special Sensor Microwave
Imager (SSM/I) observations. They estimate the sur-
face emissivity with the help of collocated visible and in-
frared satellite observations to determine clear-sky con-
ditions before analyzing cloudy scenes, but they only
present results from a few cases over the central Unated
StatesS. Njoku [1995] concluded from simulations that
land surface temperature could be retrieved from multi-
channel microwave observations with an accuracy of 2 to
2.5 K. MacFarland et al. [1990] investigated the corre-
lation between SSM/I observations and surface air tem-
perature, and Basist et al. [1998] proposed a method
to retrieve near-surface air temperatures from SSM/I.

Microwave land surface emissivities over the globe
have been recently estimated from SSM/I observations
by removing the contributions of the atmosphere, clouds,
and rain using ancillary satellite data [Prigent et al.,
1997, 1998]. The correspondences between the geo-
graphical patterns and seasonal variations of the esti-
mated microwave emissivities are compatible with geo-
graphic variations of large-scale topography, vegetation
type, flooding, and snow cover extent. The standard
deviations of the day-to-day variations of the retrieved
emissivities within a month are typically about 0.012 for
all the SSM/I frequencies, which is an estimate of the
precision of these estimates. Assuming that these emis-
sivities are constant over a month, a nonlinear iterative
variational assimilation was developed to retrieve simul-
taneously the surface and atmospheric parameters (sur-
face temperature T's, integrated water vapor WV, and
cloud liquid water path LW P) over land from SSM/I
observations [Prigent and Rossow, 1999]. The theoret-
ical estimate of the error of the surface temperature
retrieval has a mean standard deviation of 1.6 K, does
not strongly depend on surface type, and is not very
sensitive to the presence of thin clouds. The sensitivity
of SSM/I to water vapor is very low, except in the most
arid areas where the microwave surface emissivities are
low for the horizontal polarization; so the results do not
improve on the first guess values. With an estimated
accuracy of ~0.1 kg m~2, the SSM/I retrieval does not
properly characterize the thinner clouds (the majority),
but the cloud structures with higher liquid water con-
tent are well delineated.

A further improvement in this variational assimila-
tion scheme could be obtained by also retrieving the
seven surface emissivities as they undergo small day-to-
day changes induced by variations of the soil moisture,
the vegetation density, or the snow cover. However, in
this case, 10 variables would have to be retrieved (T's,
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WYV, LWP plus the seven emissivities Em;, where 4
represents the seven channels of SSM/I: 19 GHz V, 19
GHz H, 22 GHz V, 37 GHz V, 37 GHz H, 85 GHz
V, and 85 GHz H, where V is for vertical polarization
and H is for horizontal polarization) from the seven
SSM/I brightness temperatures and additional infor-
mation would be needed to solve the problem. The
monthly mean emissivity values previously computed
could be used as first guess (or, using more specifically
the variational assimilation formalism, the background)
estimates of the surface emissivity and the first guess
matrix of error covariances could be calculated. There
are several options: The covariance matrix could be
calculated globally for a given month, estimated for a
given type of surface, or even calculated for each single
pixel considering all the monthly mean emissivities for
this pixel. The inversion scheme would then rely very
heavily on the representativeness of such covariance ma-
trices, giving an important weight to the statistical de-
scription of the emissivity relationships. Given this dif-
ficulty with the retrieval of the surface emissivities with
a variational assimilation method, another inversion ap-
proach is considered.

Neural network techniques have already proved very
successful in the development of computationally effi-
cient inversion methods for satellite data and for geo-
physical applications [Escobar et al., 1993; Aires et al.,
1998; Chevallier et al., 2000]. They are well adapted
to solve nonlinear problems and are especially designed
to capitalize on the inherent statistical relationships
among the retrieved parameters. Such an approach
has been used for retrieving columnar water vapor and
liquid water or wind speed using SSM/I observations
[Stogryn et al., 1994; Krasnopolsky et al., 1995; Krasno-
polsky et al., 2000]. In these works, the problem is better
defined than over land. Note that variational assimila-
tion techniques, as usually implemented, do not account
for correlations among the retrieved parameters but be-
tween the first guess error of variables. However, for
many ill-conditioned problems, the use of a first guess
estimate is very important to regularize the inversion
process, and the first guess error covariance matrix is
also essential in three-dimensional/four-dimensional (3-
D/4-D) variational assimilation schemes since it con-
trols the impact of the measurements on the retrieved
parameters [Thépaut et al., 1993]. Up to now, neu-
ral network techniques have not used such a priori in-
formation (i.e., a specific state-dependent first guess
estimate), which was a major handicap of this tech-
nique compared to the classical variational assimilation
method.

In this study, a neural network approach is developed
that includes the use of a first guess to retrieve the sur-
face skin temperature T's, the integrated water vapor
content WV, the cloud liquid water path LW P, and
the microwave land surface emissivities Em; between
19 and 85 GHz from SSM/I observations. Section 2
shows that the neural network with first guess and vari-
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ational assimilation approaches share important theo-
retical concepts and highlights some of the technical
differences. A simulated database is carefully designed
to train and test the neural network with special atten-
tion to its statistical representativeness on a global basis
(section 3). It is derived from a global collection of co-
incident surface and atmospheric parameters extracted
from the National Center for Environmental Predic-
tion (NCEP) reanalysis, from the International Satel-
lite Cloud Climatology Project (ISCCP) data [Rossow
and Schiffer, 1991], and from the microwave emissivity
atlases previously calculated. Results are presented in
section 4, and section 5 concludes this study, highlight-
ing the merits of the neural network inversion technique.

2. Neural Network and Variational
Assimilation Techniques

2.1. Inverse Problems

Let y be a physical forward-model output (the radia-
tive transfer function in the atmosphere for the follow-
ing application) so that

(1)

where z are the physical variables (T's, WV, LW P, and
the seven Em,; in this study), y° are the observations
(seven brightness temperatures T'B observed by SSM/1
in this study), and 7 are the observation (or model) un-
certainties (instrumental noise on SSM/I in this study).
Note here that y and x are vectors representing mul-
tivariate observations and multiparameter data. The
inverse problem consists in retrieving the physical vari-
ables = given the observation y°. There exist two main
approaches to solve this problem.

In the first one called “localized” inversion, an inverse
process is used for each observation to find an estimate
# of the physical variables z by minimizing a distance

D(y(2),y°)- (2)

This distance is dependent on the a priori information
available on the probability distribution functions of the
variables involved. If the observations y° are assumed
to be Gaussian distributed with zero mean and without
other a priori information, the Mahalanobis distance
[Crone and Crosby, 1995] is optimal

L@ ) <oyt > @) - o)

v’ =y(z) +n,

3)

where < y - y* > is the covariance matrix of the ob-
servable quantities without measurement noise y. This
is preferable than using noisy observations because in
that way we compare two quantities y(&) and y° more
directly in their structure, that is, less sensitive to the
noise which pollutes the comparison. This procedure
has to be applied to find an optimum solution for each
observation separately and can require significant com-
putational resources.
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The second approach consists in estimating a trans-
fer function gw, with parameters W, that is a global
model for y~!. The parameters W are the results of
the minimization of a cost function

/D@wwwm% (4)

where 2 = gw(y°) = gw(y(z) + 1) and P is the joint
probability distribution of the physical variables z and
the noise 7. The distance D(Z, ) is integrated over the
physical states and over the observation noise, so that
the transfer function gw is optimized globally over the
range of = and the noise. In practice, to minimize the
previous criterion, a database is created, composed of
a statistically representative sample of coincident vari-
ables = and observations y° and the estimation of the
parameters W is made once and for all using this data
set. These schemes are called “global” inversions. Af-
ter this preliminary step for the estimation of W, the
inversion of an observation is very fast since it involves
only the direct use of the transfer function gw.

The distances used for localized and global inversion
schemes involves different variables. The first one works
on the brightness temperature space, the second one on
physical variable space. The optimum solution in (4)
gives an estimation & that is close to the true solution
¢ while the distance in (2) specifies that the brightness
temperatures y(&), associated with the estimated solu-
tion #, are close to the brightness temperatures y(z),
associated to the real solution z.

Inverse problems are often ill-posed since the exis-
tence and the uniqueness or the stability of the solution
is not always known [Vapnik, 1997]. This is especially
the case when the “forward” model y(z) is not linear;
in our case the radiative transfer is not linear. To reg-
ularize the inversion process, all a priori information
available should be used to constrain the solution, the
inverse model, or the noise model. For example, a first
guess z¥ for the solution can be used, a “virtual” mea-
surement in contrast to the observations y° which are
“direct” measurements. To our knowledge, this has not
been tried in neural network inversion schemes.

In this study, a localized technique, the variational
assimilation approach, and a global technique, the neu-
ral network approach, are theoretically compared. Both
can solve nonlinear problems. Notations are summa-
rized in the notation list. The variational assimilation
is described in Appendix A, using the same formalism
and notation in order to facilitate the comparison with
the neural network technique.

2.2. New Neural Network Inversion Scheme
Using First Guess Information

2.2.1. Nonlinear model: The multilayer per-
ceptron neural network. The multilayer percep-
tron (MLP) network is a nonlinear mapping model com-
posed of parallel processors called “peurons.” These
processors are organized in distinct layers: The first
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Figure 1. Neural network architectures: (a) classical
MLP, and (b) MLP with first guess. Variable y° is the
observation, and x; is the first guess for z, the retrieved
variables.

layer Sp represents the input Y = (y; ; 1 € Sp) of the
mapping. The last layer Sy represents the output map-
ping X = (z ; k€ Sr). The intermediate layers Sy,
(0 < m < L) are called the “hidden layers.” These lay-
ers are connected via neural links (Figure 1): Any neu-
rons, i and j, in two consecutive layers are connected
with a synaptic weight w;;.

Each neuron j executes two simple operations. First,
it makes a weighted sum of all of its inputs z;: This
signal is called the activity of the neuron

b

ieInputs(y)

a; = Wij * Zi. (5)

Then it transfers this signal to its output through a so-
called “activation function,” often a sigmoid function
such as o(a) = tanh(a). The output z; of neuron j in
the hidden layer is then given by

2

icInputs(j)

zj=o0(aj) =0 wij Zi (6)

Generally, for regression problems, the output units
have no activation function. For example, in a one-
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hidden-layer MLP, the kth output z of the network is
defined as

zr(Y) = Z wjk 0 (aj) = Z Wik O (Z Wij yi) .

JESY jES1 1€ Sy
(7)

This equation is the only computation required in the
operational mode (once the synaptic weights have been
determined by the training procedure). A bias term for
each neuron has been deliberately omitted to simplify
the notation, although if it is used in the neural network.
It has been demonstrated [Hornik et al., 1989; Cybenko,
1989] that any continuous function can be represented
by a one-hidden-layer MLP with sigmoid functions o.

2.2.2. Optimization algorithm: Backpropa-
gation of errors. Given a neural architecture (func-
tions used as activation functions o, number of layers,
neurons, and connections), all the information of the
network is contained in the set of all synaptic weights
W = {w;;}. The learning algorithm is an optimization
technique that estimates the optimal network parame-
ters W by minimizing a cost function C; (W), approach-
ing as closely as possible the desired function. The cri-
terion usually used to derive W is the mean square error
in network outputs

Ci(W) = % > //DE(i'k(Y;W),xk)2 P(Y,zx)

k€S>

dzedY,  (8)

where Dpg is the Euclidean distance between zy, the
kth desired output component, and £, the kth neural
network output component, and Ss is the output layer
of the neural network. Other contrast measures can
be used if a priori information is available. P(Y,zy) is
the joint probability distribution function of ¥ and .
This criterion is just the integrated distance between &
and z introduced in (4).

In practice, the probability distribution function
P(Y,x) is sampled in a data set B = {(Y¢,z;°),e =
1,...,N} of N input/output couples, and Ci(W) is
then approximated by the classical least squares cri-
terion:

N
Ci) = 530 3 Diplan(ys W), a.)2

e=1k€eS,

(9)

The error back-propagation algorithm [Rumelhart et
al., 1986 is used to minimize C) (W). It is a gradient de-
scent algorithm that is very well adapted to the MLP hi-
erarchical architecture because the computational cost
is linearly related to the number of parameters. Tradi-
tional gradient descent algorithms use all the samples of
the data set B to compute a mean Jacobian of the cri-
terion Cy (W) in (9). These algorithms are called deter-
ministic gradient descent. The major inconvenience of
this approach is that the descent can be trapped in local
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minima. In the present application, a stochastic gradi-
ent descent algorithm is adopted: It uses the gradient
descent formula iteratively for a unique random sample
in the data set. With some constraints not discussed
here, the stochastic character of this optimization algo-
rithm theoretically allows the optimization technique to
reach the global minimum of the criterion instead of a
local minimum [Duflo, 1996].

2.2.3. Introduction of the first guess. When
an inverse problem is ill-posed, the solution can be
nonunique and/or unstable. The use of a priori first
guess information is important to suppress ambiguities:
The chosen solution is then constrained so that it is
physically more coherent. Statistically, this regulariza-
tion avoids local minima during the learning process
and it speeds it up.

Introduction of a priori first guess information as part
of the input to the neural network is proposed. This
idea is simple and general. However, the inputs of the
network are no longer homogeneous (i.e., different types
of variables, which changes their dynamics), but this
problem can be solved as described below. First, the
neural transfer function becomes

&= gW($b7yo)a (10)
where # is the retrieval (i.e., retrieved physical param-
eters), gw is the neural network g with parameters W,
2" is the first guess for the retrieval of physical param-
eters z, y° = y(z) + n are the observations, and 7 the
observation noise.

The learning algorithm consists of estimating the pa-
rameters W of the neural network that minimize the
mean least squares error criterion. The term “mean”
depends on the probability distribution functions of the
physical problem. In this experiment the least squares
criterion is of the following form

Co (W) = —;—///DE(gW(ﬂt?",y"),x)2 P(z,y°,z°)
(11)
sy =3 [ [ [ Detawta e+,

P(z)Py(n)P:(e),  (12)

where P(z) is the probability distribution function of
the physical variables « that depends on the natural
variability. P,(n) is the probability distribution func-
tion of the observation noise 1. P:(€) is the probability
distribution function of the first guess error ¢ = z° — .

The quality criterion in (11) is very similar to the
quality criterion of variational assimilation in (A2). The
differences are that in neural network criterion we min-
imize a difference (i.e., least squares approach for the
Euclidian distance), and in the variational assimilation
approach, we maximize a conditional expectation (i.e.,
maximum likelihood approach, which is close to least
squares). Furthermore, neural network criterion in (11)
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involves the distribution P(z). This is due to the fact
that the neural network simulates the inverse of the ra-
diative transfer equation globally, once and for all, and
uses the distribution P(z) for this purpose. The neural
network model is then valid for all observations (i.e.,
global inversion). The variational assimilation model
has to compute an estimator for each observation (i.e.,
local inversion).

To minimize this criterion, we create a data set B =
{(a:e,yoe,xbe); e = 1,...,N} that samples as well as
possible all the probability distribution functions in
(11). Then the practical criterion used during the learn-
ing stage is given by

N
Co(W) = % S Delgw (e, y7), e (13)
e=1

First, to sample the probability distribution function
P(z), we select geophysical states (z¢) that cover all
natural combinations and their correlations and by cal-
culating y¢ = y(z°) with the physical model (the radia-
tive transfer model in this case). Alternatively, we could
obtain these relationships from a “sufficiently large” set
of colocated and coincident values of y and z. For sam-
pling P, we need a priori information about the mea-
surement noise characteristics; a physical noise model
could be used, but if all we have is an estimation of the
noise magnitude, then we have to assume Gaussian dis-
tributed noise 7 that is not correlated among the mea-
surements. To sample the first guess variability with
respect to state z (i.e., sampling P(z%|z)), there are two
situations. If a first guess data set {z*°; e=1,...,N}
exists, then 2z can be used directly. If such a data
set is not available, we have to determine P(g) (as it
is done in variational assimilation technique), the dis-
tribution of errors in the first guess, € = z° — z, and
use z° = z + ¢ as input to the network. The balance
between reliance on the first guess and the direct mea-
surements is then made automatically and optimally by
the neural network during the training.

Table 1 summarizes the specific features of the neu-
ral network scheme with first guess and the variational
assimilation inversion technique.

3. Generation of a Database to Train
the Neural Network

To constrain the problem (the problem is then better
posed), we use the clear/cloudy flag information pro-
vided by the ISCCP data set to train two neural net-
works: One for clear scenes (NN1) and one for cloudy
scenes (NN2). This specialization of the NNs facili-
tate the training of the neural network models. They
both retrieve simultaneously the surface temperature
T's, the integrated water vapor content WV, and the
seven SSM/I surface emissivities Em;. In addition to
these parameters, NN2 retrieves the cloud liquid water
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Table 1. Comparison of the Variational Assimilation and Neural Network Inversion Schemes

Variational Method

Neural Network Inversion

Observation / measurement
First guess a priori information
Retrieved variable

Direct model used

Inverse model

Model

Quality criterion

Data set of observations

Direct model errors

o

o

Y Y
z® z®
T T

radiative transfer model,
used during the inversion

linearized locally
y(2) = y(zn) + H(zn)(z — za)
[ = Paly ="
used to estimate the first guess
error covariance matrix B
assumed to be Gaussian:
with error covariance matrix F

radiative transfer model,

used during the construction of B,
if no collocated data set exists

nonlinear, global
nonlinear: x = gw(l‘b, y°)

3 [ [ Delow(a’,y%),2)* Pz,y°,2")
used to sample the pdfs

already sampled in the data set,

if B is simulated by a RT model

First guess error
Observation error

Inversion type

assumed to be Gaussian:

with error covariance matrix B
assumed to be Gaussian:

with error covariance matrix F
local inversion: inversion

process for each observation

no constraint, simulated using true
and first guess solution data sets

no constraint, depends on instrument,
supposed Gaussian in this study, E

global inversion: estimation of the
inverse model once and for all

path LW P. Two sources of information are used for
this purpose: (1) seven SSM/I brightness temperatures
(observations), and (2) a priori information of the state
of the surface and atmospheric variables from ancillary
data sets. In this study the experimental configuration
is similar to the one used by Prigent and Rossow [1999].
A collection of SSM/I observations colocated and coin-
cident with independent measurements of the param-
eters to be retrieved (T's, WV, LWP, and the Em;)
is not available. However, other estimates of T's and
LW P are available every 3 hours from ISCCP, NCEP
provides WV analysis every 6 hours, and the land sur-
face microwave emissivities are available as monthly es-
timates. As a consequence, brightness temperatures
simulated by the radiative transfer model are used in
the database instead of observations. These radiative
transfer results are obtained using the selected values
of T, WV, LWP, and Em;. To the extent that these
data sets provide a proper global distribution of the sur-
face and atmospheric parameters, including their corre-
lations, the neural network represents a global fit of the
inverse radiative transfer model (i.e., transfer function).

The SSM/I instrument on the Defense Meteorologi-
cal Satellite Program polar satellites senses atmospheric
and surface emissions at 19.35, 22.235, 37.0, and 85.5
GHz with both horizontal and vertical polarizations, ex-
cept for 22.235 GHz which is vertical polarization only
[Hollinger et al., 1987]. An instrument evaluation has
been performed by Hollinger et al. [1990], and an in-
tersensor calibration has been completed by Colton and
Poe [1999]. The radiometric noise is supposed to be
Gaussian distributed, so it is entirely defined by its noise
covariance matrix E =< n-n* >. Errors in channels are
supposed to be uncorrelated, and the standard devia-

tion of each channel error is estimated to be 0.6 K. So
matrix F is defined as 0.6 X I7x7, where Iy«7 is the 7x 7
identity matrix.

3.1. A Priori First Guess Information and
Related Background Errors

3.1.1. Water vapor first guess derived from
the NCEP reanalysis. The temperatures and rela-
tive humidities for eight levels up to 300 mbar (middle
and lower troposphere) are available from the NCEP
reanalysis data set. The NCEP reanalysis project is de-
scribed by Kalnay et al. [1996]. It uses various data col-
lections but excludes SSM/I derived information. These
profiles are available every 6 hours at a spatial resolu-
tion of 2.5° in latitude and longitude. For each loca-
tion the atmospheric profile has been adjusted for con-
sistency with the topography (truncation or downward
extrapolation of the atmospheric profiles depending on
the topography differences between the NCEP reference
elevation and ours). The integrated water vapor WV is
used as first guess a priori information. The first guess
error is taken to be 0.4 times the NCEP WV first guess,
similar to the WV error values obtained when using the
error covariance of each humidity level as given by Fyre
et al. [1993]. The mean temperature of the first atmo-
spheric layer T'a derived from NCEP is also used as a
priori information in the retrieval.

3.1.2. Use of the ISCCP data set. In the IS-
CCP data, cloud parameters and related quantities are
retrieved from visible (VIS ~0.6 pm wavelength) and in-
frared (IR ~11 pum wavelength) radiances provided by
the set of polar and geostationary meteorological satel-
lites [Rossow and Schiffer, 1999]. The ISCCP data set
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is used in this study to discriminate between clear and
cloudy scenes (selecting NN1 or NN2) and to give es-
timates of the cloud top temperature and surface skin
temperatures. The pixel level data set (the DX data set)
is selected for its spatial sampling of about 30 km and
its sampling interval of 3 hours [Rossow et al., 1996).

3.1.2.1. Surface temperature first guess: IS-
CCP provides the surface skin temperature first guess
retrieved from IR radiances under clear conditions. The
IR emissivity of the surface is always close to 1 and
varies with the land surface type as in the Goddard
Institute for Space Studies general circulation model.
Instead of selecting the closest-in-time DX image to de-
rive the surface temperature, a linear interpolation be-
tween two ISCCP surface temperature estimates to the
precise time of the SSM/I overpass is calculated to ac-
count for the diurnal cycle. If the ISCCP DX scenes are
cloudy, a clear-sky compositing procedure is conducted
within the ISCCP process to derive an estimation of
the surface temperature (see Rossow and Garder [1993]
for more details). The error associated with the sur-
face temperature is estimated to be 4 K [Rossow and
Garder, 1993).

3.1.2.2. Cloud a priori information: First the
ISCCP data discriminates between clear and cloudy
scenes. Over the ocean it has been shown that the
VIS and IR observations have a better ability than
the microwave measurements to detect clouds [Lin and
Rossow, 1994]. Given that the sensitivity of the mi-
crowave to clouds over land is much lower than over
ocean, when a pixel is considered clear by the ISCCP
procedure, the LW P is fixed to zero. Two neural net-
works are used, one for clear scenes another for cloudy
scenes. The ISCCP cloud flag directs the retrieval to
one network or the other.

For cloudy scenes, the cloud top temperature derived
from IR measurements is added to the retrieval process
as additional information to account for the changes in
the emission temperature of the cloud and in the cloud
liquid water absorption coefficient. In contrast to the
ocean case, clouds induce only small variations in the
microwave radiation over land and additional cloud in-
formation improves their retrieval. Prigent and Rossow
[1999] showed that the ability to estimate liquid water
path depends essentially on the contrast between the
radiance emitted by the cloud and the radiance that
emanates from the surface: consequently, the accuracy
of LWP retrieval varies widely with the cloud condi-
tion, especially with cloud top temperature [ Prigent and
Rossow, 1999]. Thus knowledge of the cloud top tem-
perature helps retrieve cloud liquid water path, and the
ISCCP DX cloud top temperature derived from IR mea-
surements is used as a priori information. If the ISCCP
DX cloud top temperature is > 260 K, it is assumed that
the cloud is composed of liquid water [Lin and Rossow,
1997 and the location of the cloud temperature is dic-
tated by ISCCP.
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Figure 2. Distribution of liquid water cloud top tem-
perature (T'c) in June for three different latitude zones:
tropical (0°N-15°N), mid latitude (30°N-45°N), and
high-latitude (60°N-75°N) zones.

If the ISCCP cloud top temperature is < 260 K, the
higher portion of the cloud is probably formed of ice and
the contribution of the ice in the cloud is not consid-
ered. There is a possibility that this ice cloud obscures
a liquid cloud or becomes a liquid cloud below. An anal-
ysis has been performed on global ISCCP DX data to
estimate the statistical distribution of cloud top temper-
ature of the liquid clouds over land for each 15° latitude
zone for each month. Examples of these distributions
are given in Figure 2. Assuming that the distribution
of liquid cloud top temperatures is not modified in the
presence of an overlying ice cloud, the first guess lig-
uid cloud top temperature is then stochastically drawn
from the distribution of liquid cloud top temperature of
the corresponding month and latitude zone to maintain
random error characteristics.

3.1.3. Microwave emissivities. First guess a
priori information for the microwave emissivities at each
location are derived from the monthly mean emissivities
previously estimated by Prigent et al. [1997]. The stan-
dard deviation of day-to-day variations of the retrieved
emissivities within a month o, have been calculated for
each channel and for each location and are used as es-
timates of first guess errors for these quantities.

3.2. Radiative Transfer Model

A direct radiative transfer (RT) model adapted to
the SSM/I channels is used to create the learning and
testing databases required for the neural network inver-
sion. The MPM 93 gaseous absorption model of Liebe
et al. [1993] is adopted for all the SSM/I frequencies.
In this model, H,O and O, lines are added up to 1 THz,
assuming a Van Vleck Weisskopf line shape. For oxy-
gen, this function is modified by Rosenkranz [1992] to
include line coupling in the 60 GHz band. An empir-
ical H2O continuum is added, derived from laboratory
measurements [Liebe et al., 1993]. A revised gaseous
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absorption model, validated up to submillimeter wave-
lengths, has been recently developed [Pardo et al., 2001]
but is not used in this study because the differences at
SSM/I frequencies are negligible.

Cloud absorption is calculated using the Rayleigh ap-
proximation which is valid for most non precipitating
liquid water clouds at SSM/I frequencies. The cloud
temperature is assumed to be equal to the air tem-
perature at the same level. The dielectric properties
of liquid water are taken from Manabe et al. [1987].
Scattering by large particles is not considered, mean-
ing that convective clouds and rain are not represented
in the database. The surface contribution is calculated
using the monthly mean emissivities previously calcu-
lated [Prigent et al., 1997, 1998] and assuming specular
reflection at the surface.

The consistency of the radiative transfer model has
been checked. Observed brightness temperatures and
simulated Tbs using the ISCCP T's and LW P, the
NCEP WV, and the monthly Em,; have been compared
for 2 months of SSM/I data globally over snow and ice-
free pixels: For all channels the bias is smaller than
0.5 K even for cloudy cases. Thus the training data set
generated with this radiative transfer model and sources
of global data accurately represents the distribution of
these parameters that SSM/I observes.

3.3. Statistical Analysis of the Training
Database

The training database generated by the RT model
applied to the ISCCP, NCEP, and monthly Em; data
sets contains the variables to be retrieved (T's, WV,
LW P, and the seven Em;), the seven simulated bright-
ness temperatures T'b, and a priori information on the
cloud top temperature T'c and the temperature of the
lowest layer of the atmosphere T'a. An error is associ-
ated with most variables that are used as first guesses.
The database is produced from data collected for Jan-
uary and June 1993 over land between 60°S and 80¢:"°N.
Snow- or ice-covered pixels are not considered: The
snow and ice information comes from the NOAA op-
erational analysis. Of 1,391,671 samples collected, 55%
of them correspond to cloudy scenes.

Figure 3 shows the “global” distributions of some of
the variables in the training database. The distribu-
tions are non-Gaussian and some of them are truncated.
For example, the liquid water path distribution has its
peak frequency at the lowest values and obviously can-
not be negative. When retrieving such a variable with
the usual form of the variational assimilation, the as-
sumptions of a Gaussian distribution and positive val-
ues introduces biases in the retrieval. A change of vari-
ables is sometimes performed to alleviate this problem
of non-Gaussian distributions [Phalippou, 1996]. The
clear and cloudy distributions of the brightness tem-
peratures are very similar for all frequencies and for
both polarizations indicating the difficulty of detecting
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clouds over land. These distributions have been used to
control the quality of the data: Values lying beyond the
first zero frequency on either side of the mode values in
the distributions have been suppressed.

A good representation of the physical probability dis-
tributions in the learning data set is fundamental to
describe all complex relationships of the variables, es-
pecially when the distributions are non-Gaussian. The
data set needs to sample the real probability density
function (pdf) if we want the neural network to be op-
timal for this natural variability. Another possible ap-
proach would be to use uniform distributions in order
to give the same statistical weight to each atmospheric
condition, even to extreme events, which would allow
the neural network to have the same level of accuracy
for all atmospheric situations. In this work we have
chosen to optimize accuracy for the most frequently oc-
curring events.

Table 2 presents the linear correlations between the
variables, in the global database for clear and cloudy
cases, separately, to illustrate the inter dependence of
the variables in the database. These correlations do not
distinguish direct dependence between variables from
indirect ones due to intermediate variables: Variables
that are not physically related can be statistically cor-
related via a third variable. This illustrative calculation
assumes linear relationships between the variables but
nonlinear relationships are more likely. Note that the
neural network technique can exploit these nonlinear
correlations between variables to improve the retrievals,
whereas the usual forms of the variational assimilation
approach neglect all correlations.

The seven T'b are strongly correlated with each other,
especially for a given polarization. This fact is often ig-
nored in design of simpler retrieval methods and in the
estimation of their errors (cf. discussion by Lin and
Rossow [1994]). Note that the T'b in this table are cal-
culated by the physical model, but similar results (not
shown) are obtained with observed T'b. The seven Em;
are also highly correlated (correlation >0.7): Since the
seven emissivities are not independent variables, use of
their statistical relationships will definitively help con-
strain their retrieval.

At a given frequency, correlation of the surface tem-
perature with brightness temperature is higher for the
vertical polarization than the horizontal one. This can
be explained by less variability in the emissivities for the
vertical polarization than for the horizontal one. Cor-
relations between surface temperature and brightness
temperatures at vertical polarization are similar at all
SSM/I frequencies, which was not anticipated. At 22
and 85 GHz, water vapor absorption was expected to
impede a direct relation between surface contributions
and top of the atmosphere measurements, and as a mat-
ter of fact, derivatives of the brightness temperatures
with surface temperature (sensitivities) are smaller at
22 and 85 GHz than at 19 and 37 GHz [Prigent and
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Figure 3. Probability distribution functions of variables in the training database.
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Rossow, 1999]. Other authors have also observed large
correlations at 85 GHz between surface air temperatures
and Tbs at 85 GHz. MacFarland et al. [1990] investi-
gated the correlation between SSM/I observations and
surface air temperature and concluded that 22 and 85

s 828 .  SBFA53IIBHZTERS Hz measurements, depending on the surface type, are
1S oSS so I ’ yPe,
S SoS >SS C R e th L. he land . ¢ ¢ Ba-
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Table 2. Global Linear Correlations of Physical Variables and the Calculated Microwave Brightness Temperatures®

neural network can exploit to improve its retrieval if
such correlations are properly represented in the train-
ing data set.
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In contrast, the variational assimilation scheme, in
its classical implementation, does not take into account
statistical information about correlation between the
variables (see Appendix A). It only uses the matrices of
first guess and observation error covariances. In most
formulations it is assumed that the first guess errors are
uncorrelated (i.e., diagonal covariance matrices). These
matrices are often calculated locally and may not be
representative at a global scale. At the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF),
for instance, the matrices of error covariance for water
vapor and temperatures have been estimated from ob-
servations in the London area only [Eyre et al., 1993;
Gadd et al., 1995]. Presently, first guess error (or, more
precisely, background error, in the variational assimila-
tion terminology) covariance matrices are estimated by
ECMWF with a certain latitude dependence assuming
that the difference between forecasts at different ranges
valid at the same time are representative of short-range
forecast error [Rabier et al., 1998; Derber and Boutier,
1999]. Still, no cross correlation between the first guess
error of temperature, specific humidity, and ozone is
used, whereas situation-dependent first guess error co-
variance matrices with different length scales at differ-
ent locations are desirable.

To represent such complex relationships between the
variables, matrices of error covariances would have to be
calculated for a set of situations that describe the cor-
related time and space variabilities of the parameters.
Use of localized covariance matrices corresponds to the
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linearization of a complex, nonlinear function, possibly
producing continuity problems. Because of its nonlinear
capacity, the neural network approach avoids these dif-
ficulties by adapting itself to the statistical variabilities
and correlation relationships of the physical variables,
provided that the database satisfactorily describes the
variety of the situations to be analyzed.

4. Results From the Neural Network
Inversions

Two neural networks have been trained, one for clear
pixels (NN1) the other one for cloudy pixels (NN2),
both using a priori first guess information. The ISCCP
cloud flag discriminates between clear and cloudy pix-
els. The architecture of the network NN1 is a MLP with
17 inputs coding the seven SSM/I observations, y°, and
the first guess, z; (T's, Ta, WV, and 7 Em;), 30 neu-
rons in the hidden layer, and 9 neurons in the output
layer coding the retrieval, z (T's, WV, and 7 Em;). The
number of neurons in the hidden layer is estimated by
a heuristic procedure that monitors the generalization
errors of the neural network as the configuration is var-
ied. The network NN2 has one additional input, the
cloud top temperature T'¢, and one additional retrieval,
the liquid water path (LW P). The input variables and
their associated standard deviation errors are summa-
rized in Table 3. The full matrix of the error covariances
is calculated at the end of the training phase (not shown
here). This matrix gives the statistical structure of the

Table 3. RMS Error Results for First Guess and Retrievals

Observation NN1 NN1 NN2 NN2
or First Guess Clear Without Clear With  Cloudy Without Cloudy With
Errors First Guess First Guess First Guess  First Guess
TbSSMI 19 GHz V (K) 0.600
ThSSMI 19 GHz H (K) 0.600
TbhSSMI 22 GHz V (K) 0.600
TbhSSMI 37 GHz V (K) 0.600
TbhSSMI 37 GHz H (K) 0.600
TbSSMI 85 GHz V (K) 0.600
TbSSMI 85 GHz H (K) 0.600
Ta*(K) 3.000
Tc(K) 2.000
st(K) 4.000 3.470 1.340 3.310 1.570
LW P®kg.m-2) = . . 0.090 0.080
WV*(kg.m-2) 40.00° 5.330 3.830 6.860 4.900
Em 19 GHz V 0.016 0.012 0.004 0.012 0.006
Em 19 GHz H 0.018 0.011 0.004 0.012 0.006
Em 22 GHz V 0.018 0.013 0.005 0.013 0.006
Em 37 GHz V 0.015 0.012 0.004 0.012 0.006
Em 37 GHz H 0.018 0.011 0.005 0.013 0.006
Em 85 GHz V 0.020 0.015 0.006 0.016 0.009
Em 85 GHz H 0.023 0.016 0.008 0.018 0.010
aNCEP.
bISCCP.

¢In %.
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Figure 4. Time evolution of the RMS retrieval errors during the learning phase of the neural
network for network with (FG) and without first guess inputs.

errors and is of great importance in the assimilation of
retrieved products in a Numerical Weather Prediction
scheme.

For each variable the distribution of the first guess
error is a Gaussian truncated at 2 standard deviations.
In contrast to the variational assimilation, where only
Gaussian distributions can be used, the neural network
method can use any distribution shape. However in the
present study, no in situ data are available to calculate
the distribution of the first guess errors, so Gaussian
noise is introduced independently for each variable to
generate the first guess. In the operational mode with
real first guesses, the technique will use the structure of
the first guess error correlations and the results should
be even better.

Figure 4 presents the learning curves of the neural
network for clear and cloudy situations with and with-
out first guesses. To measure the impact of the intro-
duction of the first guess information in a neural net-
work inversion scheme, two additional networks have
been trained without first guesses, one for clear condi-
tions and another for cloudy scenes. The architectures
of the networks without first guess are similar in struc-
tures, except that there are only seven inputs, coding
the SSM /I observations y°. For each retrieved variable,
the RMS error decreases from the first guess RMS er-
ror to a stable value after several iterations. The net-
works with first guess input show substantially better
fits to the training data set (see Table 3 for retrieved
variable RMS global errors for the networks with and

without first guess). The continuity between the two
networks NN1 and NN2 at low liquid cloud content
(LW P <0.005) has been checked and is satisfactory:
Mean differences are -0.5 K in T's and 0.79 kg m~? in
WV.

Results for 1 day are displayed on Plate 1, for T's,
WV, LWP, and Em at 19 GHz horizontal polariza-
tion. For the same retrieved variables, Figure 5 shows
the distributions of the retrieval errors, separately for
three ranges of Em and for clear and cloudy scenes,
since different sensitivities to the retrieved parameters
are expected depending on the surface and cloud charac-
teristics. The surface types classified by monthly mean
Em at 19 GHz in the horizontal polarization are related
to the vegetation density [Prigent et al., 2001]: Surfaces
with 19 GHz Em < 0.9 for the horizontal polarization
generally correspond to desert-like areas; zones of dense
vegetation show 19 GHz emissivities > 0.95. Cloudy
scenes are divided into two groups according to their
LW P estimated by ISCCP. The results for each vari-
able are discussed next.

4.1. Surface Temperature

The SSM/I observations have a good ability to mea-
sure the surface skin temperature with a RMS error of
1.3 K in clear areas and 1.6 K in cloudy cases. This
RMS error represents a significant improvement over
the first guess RMS of 4 K, which was based in part on
the inability of infrared instruments to measure surface
temperature under cloudy conditions. The accuracy of
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Figure 5. Normalized histograms of the errors (new minus observed) for (a) T's in Kelvin, (b)
WYV in relative error, (¢)LW P in kg m~2, and (d) Em 19 GHz horizontal polarization. Results
are presented for three cloud conditions (clear-sky, ISCCP LW P lower than 0.1 kg m~2, and
higher than 0.1 kg m~2) and for three ranges of E,, at 19 GHz horizontal polarization. Solid
lines indicate the errors with first guess and dashed lines without first guess. The RMS errors
are indicated with first guess and without first guess (in parentheses).

this retrieval is not affected much by the presence of
clouds (Figure 5), and it increases slightly with increas-
ing surface emissivity because of the increased contri-
bution of the surface to the observed brightness tem-
peratures. Examination of Plate 1 shows that the sur-
face temperature fields exhibit very realistic gradients
and there are no spurious structures related to varia-
tions in the emissivity fields. We checked that the T's

fields around the major rivers are not contaminated by
rapid changes in the emissivity fields. Without a first
guess solution containing estimates of the emissivities,
the RMS error is much larger, especially for low sur-
face emissivities. Most of the improvement is not ex-
pected to emanate from the surface temperature first
guess itself: Correlation between surface temperature
and brightness temperature is large enough to warrant a
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good sensitivity to surface temperature variations. The
benefit is most likely related to a good first guess in sur-
face emissivity and the fact that the neural network can
exploit the spectral dependence of the first guess emis-
sivities to provide a more accurate estimate of both the
emissivities and the surface temperature.

4.2. Water Vapor

WYV is retrieved with a relative error of ~ 30% for
both clear and cloudy situations, when using a first
guess. This is a small improvement over the first guess
RMS error of 40%. The errors are not significantly dif-
ferent in the presence of clouds. With the variational
assimilation method [Prigent and Rossow, 1999], the
retrieval errors were found to increase with decreas-
ing emissivities and to increase in presence of clouds
as expected from the sensitivity of the radiative trans-
fer to the various parameters. As observed in Table
2, the correlation between the brightness temperatures
and WV is rather low (maximum of ~0.6 globally), and
the neural network scheme is likely to exploit water va-
por correlation with another variable to extract water
vapor information when direct correlation between T'bs
and WV is not sufficient. It is worth mentioning that
the neural network is trained to minimize the absolute
WV error difference and not the relative error in WV.
Changes could be made to minimize the relative error
if this option was preferred.

4.3. Cloud Liquid Water Path

For LWP the RMS error is 0.08 kg m™2 globally,
which is an improvement over variational assimilation
retrieval and over few-channel methods. As expected,
the error is larger in areas of high emissivities where
the contrast between the land surface and the cloud
is smaller. Even in areas of low emissivities (0.85<
Em?2 <0.9), the accuracy of the retrieval is not suit-
able for detection of majority of clouds. The cloud flag
from ISCCP is of importance in this case to direct the
retrieval toward the appropriate neural network. How-
ever, cloud structures with large liquid water path can
be detected whatever the surface type; Plate 1 shows
several extended and thick clouds that are also present
on the ISCCP images (not shown). Plate 1 does not
show any evidence of LW P errors (discontinuities) re-
lated to strong emissivity gradients.

4.4. Land Surface Emissivities

When using a first guess, the neural network tech-
nique shows a good aptitude for retrieving land surface
emissivities with an RMS error lower than 0.008 (0.010)
globally for all channels, in clear conditions (cloudy con-
ditions, respectively). This is an improvement over the
first guess errors. Unaided by the first guess estimate,
the neural network technique does not perform so well.
The first guess provides the emissivity spectral rela-
tionship and the retrieval exploits from it. The emis-
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sivity field presented on Plate 1 shows very consistent
structures. The gradient between vegetated and arid
areas is correctly retrieved, as well as specific hydrolog-
ical structures like the Amazon or the Congo Rivers.
The possibility of retrieving daily land surface emis-
sivity with low RMS errors will enable an interesting
range of studies from analysis of the effect of soil mois-
ture or dew deposition to the postdetection of rainfall
events (maybe even snowfall events can be recognized,
but this idea needs further study). Detailed analysis
and understanding of the emissivity variations will also
benefit the microwave retrieval of WV and T profiles
over land: until recently a fixed emissivity of 0.95 was
used for Microwave Sounder Unit retrievals over land,
and there is an urgent need for more accurate emissivity
estimates [English, 1999].

4.5. Quality Control of the Retrieved Products

The quality of the retrieved products can be tested
by comparing the brightness temperatures at the in-
put of the neural network with brightness temperatures
that are calculated with the retrieved products as in-
puts. Table 4 gives the RMS differences for each chan-
nel for the two neural networks with first guess (clear
and cloudy). The mean RMS difference for all channels
is 0.70 for clear conditions and 0.82 for cloudy scenes.
These differences are of the order of the noise of each
channel (0.60 K), showing that the retrieval scheme per-
forms well. Further investigation reveals that the errors
are larger for cases that are infrequent in the learning
database (large cloud liquid water content or low emis-
sivity areas for instance). Within the learning phase
the synaptic weights W (equation (9)) are calculated so
that the neural network functions in an optimal way on
a global basis. For cases that are underrepresented in
the database the retrieval will not be as accurate. This
conclusion stresses the importance of the selection of an
adequate training database, depending on the purpose
of the retrieval. In this study, for instance, another al-
ternative would be to have the same accuracy in the re-

Table 4. RMS Differences Between the SSM/I
Brightness Temperatures at the Input of the Neu-
ral Network and the SSM/I Brightness Temperatures
Computed From the Retrieved Products at the End
of the Inversion Process®

NN1 NN2

Clear With  Cloudy With

First Guess First Guess

TbSSMI 19 GHz V (K) 0.55 0.70
THSSMI 19 GHz H (K) 0.78 0.99
TbSSMI 22 GHz V (K) 0.61 0.68
TbhSSMI 37 GHz V (K) 0.59 0.74
THSSMI 37 GHz H (K) 0.82 0.96
TbSSMI 85 GHz V (K) 0.87 1.06
TbSSMI 85 GHz H (K) 113 1.31

aThe first guess RMS error for each input brightness
temperature is set to 0.60 K.
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trieval, regardless of the surface emissivity. In this case,
instead of the natural emissivity distributions shown on
Figure 3, uniform distributions of the emissivities would
be chosen. Also, instead of only cloudy-clear neural net-
works, we could have clear, cloudy (small water path),
and cloudy (large water path) neural networks. This
idea could be extended to precipitation cases.

4.6. Analysis of the Neural Network
Semnsitivities

An interesting capability of the neural network tech-
nique is that the adjoint model of the neural network is
directly provided [Aires et al., 1999]. The computation
of this adjoint model (or neural Jacobians or neural sen-
sitivities) is analytical and very fast. Since the neural
network is nonlinear, these Jacobians are dependent on
the situation z. For example, the neural Jacobians in
our example of (7) (a MLP network with one hidden
layer) are

oz
8—"} = Z ’w]‘kO'l (Z wij!li) Wijs (14)

JES1 i1€So

where ¢’ is the derivative of the activation function o.
For a more complex MLP network with more hidden
layers, there exists a back-propagation algorithm that
efficiently computes the neural Jacobians. The neural
Jacobian concept is a very powerful tool since it allows
for a statistical estimation of the multivariate and non-
linear sensitivities between input and output variables
in the model under study (F. Aires and W.B. Rossow,
Inferring instantaneous, multivariate and nonlinear sen-
sitivities for the analysis of feedback processes in a dy-
namical system: Lorenz model case study, submitted to
Journal of Atmospheric Sciences, 2000).

Table 5 gives the mean neural Jacobian values for
the variables z; and y; for the neural network NN1
with first guess. The neural Jacobians are normalized
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by the standard deviation of the respective variables
(O /Oys) x (std(ys)/std(zy))) to enable comparison of
the sensitivities between variables with different varia-
tion characteristics. These values indicate the relative
contribution of each input in the retrieval of a given
output parameter. The numbers correspond to global
mean values which may mask rather different behavior
in various regions of the globe.

Figure 6 presents some of the normalized neural Ja-
cobians for the surface temperature and the water va-
por for three ranges of Em at 19 GHz H polarization.
Depending on the surface emissivity, the sensitivity of
Ts to different inputs changes from larger sensitivity
to 19 GHz vertical polarization for high emissivities to
larger sensitivity to the 85 GHz observations and the
first guess information at low emissivities (Figure 6a).
For WV retrieval, very different regimes are observed
for low and high water vapor amounts (Figure 6b), from
larger sensitivity to the 85 GHz channel horizontal po-
larization for high water vapor amount to smaller sen-
sitivity for low water vapor contents. The same trend
is observed at 22 GHz. We have already commented on
the differences between local and global correlations in
section 3.3. In contrast to a linear regresssion-type al-
gorithm that fits a mean state mapping between inputs
and outputs, the neural network can adapt itself to the
different local situations by using optimally all of the
input parameters. This means that the neural sensitiv-
ities are localized (depending on the situation) and are
multivariate. The statistically normalized neural sen-
sitivities are a multivariate and local generalization of
the correlations between the inputs and the outputs.

5. Concluding Remarks and
Perspectives

A neural network inversion scheme, including first
guess information, is developed and applied to the re-
trieval of atmospheric water vapor, cloud liquid water,

Table 5. Global Mean Neural Sensitivities for NN1 (Clear Sky Condition)

Tsurf Vap—int Eml Em2 FEm3 Em4 Embd Em6 Em7

Tsurf 0.17 -0.13 -0.17 -0.11 -0.16 -0.19 -0.10 -0.12 -0.06
Vap—int -0.04 0.33 0.04 0.00 0.04 003 -0.02 -0.04 -0.08
Tb1 0.21 0.18 058 002 047 013 -0.21 -0.19 -0.17
Tb2 0.14 032 -0.04 088 -0.17 -0.38 009 -0.22 -0.30
Tb3 0.09 -0.78 0.0 -0.09 0.16 -0.24 -0.09 -0.57 -0.24
Tb4 0.21 -0.04 017 -030 0.10 072 0.05 0.50 -0.03
Tb5 0.28 -0.95 -0.35 019 -0.26 0.04 079 -0.22 0.64
Tb6 0.25 -0.20 -0.38 -0.13 -0.30 -0.09 -0.28 0.89 0.04
b7 -0.21 2.30 0.03 -0.22 0.08 -0.17 -0.03 -0.21 0.36
Eml -0.12 0.06 0.14 008 015 015 0.07 013 0.07
Em2 -0.12 -0.02 013 011 014 015 010 0.15 0.10
Em3  -0.09 0.05 0.11 0.06 014 012 006 0.14 0.08
Em4 -0.10 0.02 011 007 012 0.14 0.08 0.14 0.07
Em5  -0.12 005> 012 010 014 0.16 0.11 0.16 0.12
Em6  -0.05 -0.05 0.06 005 008 008 005 017 0.11
Em7  -0.05 -0.15 0.06 0.06 009 009 008 020 0.19
tlay  -0.03 0.07 0.00 000 -0.01 -0.01 -0.01 -0.06 -0.03
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Figure 6. Normalized histograms of the normalized
neural Jacobians for (a) T's and )b) WV for different
input variables. Results are presented for three cloud
conditions (clear-sky, ISCCP LW P lower than 0.1 kg
m~2, and higher than 0.1 kg m~2) and for three ranges
of Em at 19 GHz horizontal polarization. In Figure 4a
the mean values of the Jacobian are indicated for each
subclass. In Figure 4b solid lines indicate the results for
low WV amounts, whereas dashed lines represent large
WV amounts.

surface temperature, and surface emissivities over land
from SSM/I observations. Such a neural network ap-
proach has several similarities to the variational assim-
ilation technique but has some advantages in both the-
oretical and practical aspects. Although their practical
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implementation can appear very different, this study
shows that the two techniques share very basic aspects.
They are both statistical inversion methods (analyti-
cal inversion methods could not deal with uncertainties
in the inputs, and the physical models to invert in re-
mote sensing are generally too complex) that minimize
a quality criterion, using a priori first guess informa-
tion and a radiative transfer (physical) model (Table 1).
Theoretical advantages of the neural network scheme
include its ability to perform a global inversion and to
handle high nonlinearity and non-Gaussian variables.
Only limited a priori hypotheses are required, which
is why this technique is so flexible. This flexibility al-
lows the neural network to exploit complex relationships
among the observations and among the retrieved quan-
tities that can vary with situation. Furthermore, the
radiative transfer calculations are only needed once to
generate the training data set. Even this is not needed
if colocated and coincident in situ measurements are
available, but this approach, which is like a traditional
empirical analysis, cannot be generalized outside the
observed variability of the data set. In principle, our
model-based approach can be general. In application,
inversion of new observations only involves simple and
rapid calculations of two matrix products and one pass
through the logistic function o of the neural network
(equation (7)). When processing large volumes of global
observations, this is a very important asset compared to
the variational assimilation. On the other hand, vari-
ational assimilation techniques have been designed to
handle two-, three- and four-dimensional data (the 2-,
3- or 4-D-Var assimilation schemes used in Numerical
Weather Prediction), a possibility that has not yet been
investigated with neural network techniques.

In this study, we have developed a neural network
scheme that includes first guess information. Its poten-
tial has been tested in the complex and ill-conditioned
problem of inversion of SSM/I microwave observations
over land. A database to train the neural network is de-
rived from a global collection of coincident surface and
atmospheric parameters, extracted from the NCEP re-
analysis, from the ISCCP data, and from microwave
emissivity atlases previously calculated. The introduc-
tion of the first guess information into the neural net-
work has a considerable impact on the results compared
to the network without first guess.

The theoretical RMS error of the surface temperature
retrieval is 1.3 K in clear-sky conditions and 1.6 K in
cloudy scenes over the globe. Microwave land surface
temperature retrieval presents a very attractive com-
plement to the infrared estimates in cloudy areas. By
combining both measurements as we have done, a com-
plete (clear and cloudy days) time record of land surface
temperature can be produced. Water vapor is retrieved
with a theoretical RMS error of 3.8 kg m™2 in clear
conditions and 4.9 kg m~? in cloudy situations. The
theoretical RMS error in liquid water path is 0.08 kg
m~2. The surface emissivities are retrieved with an ac-
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curacy of better than 0.008 in clear conditions and 0.010
in cloudy conditions, both improvements on the original
first guess.

Validation of the retreived variables is on the way,
using independent measurements. Validation of the
surface skin temperature is a particularly challenging
task. The surface skin temperature is not a routinely
measured variable. Only the surface air temperature
is available from in situ measurements and differences
between surface skin and surface air temperatures are
a complex function of the surface characteristics, the
local time, and the solar flux

The analysis methodology presented here and com-
pared to the better-known variational assimilation tech-
nique provides an illustration of a more general ap-
proach to the analysis of high-volume, multiwavelength
satellite observations that may have great potential.
The common practice of isolating one variable at a time
from such data sets breaks correlations among the mea-
surements and among the retrieved quantities. The
variational assimilation approach goes a step further
by obtaining simultaneous retrievals of many quantities
from multiple measurements; however, as usually im-
plemented, the variational assimilation still does not ac-
count for correlations of variables. The neural network
approach is not only able to accommodate strongly
nonlinear relationships but also is able to benefit from
the correlations to improve the retrievals. The neural
network approach also requires much less computation
than the variational assimilation approach. That the
two methods are conceptually close, as we have shown,
puts the neural network approach on the same theo-
retical foundation as the better-studied variational as-
similation methods. However, the fact that a simple
neural network has been shown to provide a statistical
fit to any function suggests that what the trained net-
work is doing is simulating (statistically) the equations
of the physical model, in this case an inverse radiative
transfer model. Thus, despite use of statistical meth-
ods, the analysis represents a physical model of the re-
lationship of the observations and physical quantities.
Consequently, the quality of the results depends on two
key factors: the accuracy of the physical model used to
calculate the training data set (note that model errors
can be accounted for in the retrieval design) and the
completeness of the sample of parameter correlations
represented by the training data set.

The introduction of first guess information into a neu-
ral network scheme is expected to improve applications
of this technique and to promote new developments, as
a possible alternative to variational assimilation meth-
ods, for inversion of geophysical satellite observations
for a broad range of applications. Another particularly
interesting feature of the neural network technique is
its ability to merge information coming from different
instruments. This feature of neural networks has been
used, for example, by Prigent et al. [2001]. This strat-
egy would be an excellent way to use the synergy of
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all instruments in such missions as Tropical Rainfall
Measurement Mission or in the next generation Earth
Observing Satellite satellites.

Appendix A: One-Dimensional
Variational Assimilation Scheme

This method is described by Rodgers [1976] and by
Eyre [1989]. The unified notation of Ide et al. [1997] is
adopted. Depending on the approach used to derive the
inversion formula, the technique has many names: mini-
mum variance method, least squares fitting, best linear
unbiased estimator, variational assimilation, expecta-
tion maximization, or maximum probability estimator.
All these techniques make the same assumptions (local
linearization of the physical model, Gaussian distribu-
tions of the variables) so the resulting formulae are the
same for each technique.

The Bayesian estimator associated with the Newto-
nian optimization algorithm is adopted with first guess
(or background, in the variational assimilation termi-
nology) information. First, we assume that a current
estimate z, of the geophysical parameters to be re-
trieved exists, and we compute the next estimate Zni1,
o being the first guess z’. The Newtonian method con-
sists of expanding the modeled observation vector y as
a Taylor series about the present value zp:

y(e) = y(zn) + H(zn)(z = zn), (A1)
with H(z) representing the partial derivatives of y(z)
with respect to the elements of z. In a linear inver-
sion approach this linearization of the physical model
equation is done only once about the first guess zb and
there are no iterations. The nonlinear approach of the
Newtonian optimization algorithm consists in lineariz-
ing about the estimate z,, which is improved at each
optimization step n. This assumes that the first guess
zo = 2! is sufficiently close to the true solution in order
to avoid local minima. A bad first guess can result in
an inaccurate solution.

The regression of z given y° and z,

i = Elz|y° 2] = //x P(z|y® zb)dy°dz®, (A2)

is equivalent to the maximum likelihood estimator
that maximizes

P(aly® o*), (A3)

the conditional probability of vector z given measure-
ment y° and first guess z°. Let & be a estimation of the
physical variables. For all measurements y°,

E(z - &)%|y° mb]
= E[{z - Elaly® «"] + Elaly® 2"] - 8}ly° «']
= E[(& - Elaly® 2')*ly° '] + (Elaly’ 2'] - )"
> E[(w-Elely ')’ 2*].  (A9)



AIRES ET AL.: NEURAL INVERSION OF MICROWAVE OVER LAND

The regression is also the best unbiased estimator in the
least squares sense.

Using the product rule, we can rewrite the conditional
probability in (A3) as

Pe,y,a") _ Py 2'[2)P(2)

Plye,a) Plyeahy 0 D)

P(aly® 2’) =

which is nothing else than the Bayes theorem [Loredo,
1990]. It is often assumed, even if it is not always the
case, that y° and z®, the direct and virtual (first guess)
measurements, are independent. In that case, we can
expand the corresponding joint probability distribution
functions using the product rule

Py°}2)P(a' ) P(x)

P(z]y° xb) = P(y°)P(zb)

(A6)

We want to maximize this probability with respect to
z. If the probability distribution P(z) of the physical
variables z is available, it is possible to use it in the
general context of Bayesian estimation. If this pdf is
Gaussian, this would correspond to the addition of a
term 2 [z — Z]'B~![z — Z] in (A8), where Z is the mean
state of the physical variables and B is the covariance
matrix of the physical variables. This approach is not
used in general in variational assimilation.

If no a priori information on the distribution P(z) is
available, this distribution is considered to be uniformly
distributed (i.e., no information), so this term can be
neglected during the maximization process. The two
probabilities P(y°) and P(z®) are not dependent on z
so they can also be neglected. The maximum likelihood
estimator is then obtained at the minimum of minus
the log of the two remaining probabilities. Assuming
that the minimum is unique, the optimal solution is
characterized by

o b

Ol [PEWPE]

oz
These probabilities need to be rewritten in order to
extract the independent random variables involved in
the model. Note P(y°|z) = P(y°|ly(z)) since the the-
oretical radiative transfer function y is not a stochas-
tic function. So P(y°|z) = P,(y° — y), where P, is
the probability distribution function of the instrumen-
tal noise and the forward model error. Furthermore,
P(y°lz) = PylH(zn)(z — zn) + (y(zn) = y°)] using re-
lation (A1). Also P(z’|z) = P:(a® — z) where F; is the
probability distribution function of the first guess error
E.

Assuming that the errors in the observations, the di-
rect radiative transfer model, and the a priori first guess
information are unbiased, uncorrelated, and have Gaus-
sian distributions, expression (A7) is equivalent to
0= 2 [H(@n)(® — on) + Wlen) — v (B + F)~!

(H (@) (o) + (0) ~ 90+l =1 B 2],
(48)
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where B is the first guess error covariance matrix <
(x —zb) - (z — 2°)! > (estimated with a data set of cou-
ples (ze,xbe),e =1,...,N); E is the observation error
covariance matrix; and the covariance matrix F' repre-
sents the radiative transfer model errors. We recognize
in the first term of this criterion a Mahalanobis distance
between y(z) and y° introduced in (2) and (3).
Relation (A8) is equivalent to
& H(z,)Y(E+ F)HH(zn)(z — z0) + (y(20) = y°)]

+B7 Yz -2 =0. (A9)

We then expand the last term involving the first guess
information by introducing the variable z,,,

< H(xn)t(E + F)—I[H(:En)(x =) + (y(zn) — ya)]

+B7 'z —z,) + B Mz, — 2% =0 (A10)

& [H(zn) (E+ F)"'H(zy) + B[z — z5)

= —[H(zn) (E + F) "' (y(zn) — y°) + B [zn — 2*]].
(A11)
Finally, the optimization steps for defining the maxi-
mum likelihood estimator are of the form

Tni1 = 2~ [H(@a) (B + F) 7 H(za) + B
[H (22) (B + F) 7 (y(wn) = y°) + B~ [on 3], (A12)

and the error covariance of the nth step is given by
A(zn) = (B™' + H(z,)T(E+ F) ' H(zn)) ™' (A13)

Matrix A(z,) is a theoretical estimate of the error co-
variance of the solution at step n [Rodgers, 1976]. For
the final vector # and the corresponding H (&), the ma-
trix A is not a measure of the absolute accuracy of
the retrieval but an estimate of the error covariance of
the retrieval, valid if all assumptions made for formula
(A12) are valid. Within the iterative process, some of
the geophysical variables to be retrieved are generally
constrained to physically meaningful values (essentially,
they should not turn negative in our case).

In the retrieval process, the balance between the in-
formation coming from the virtual (first guess) and the
direct measurements is implicitly controlled by the co-
variance matrix of the uncertainties associated with the
two pieces of information. If these matrices are not
sufficiently precise, or if the variability of the matrices
with atmospheric situations is not sufficiently sampled,
an “empirical” weight has to be determined.

Notation

xz  vector of physical variables to retrieve.

estimate of z.

first guess a priori information for z.

z, nth estimate of z in variational assimilation
method.

e =%~ r, first guess error.

z
0



radiative transfer function for the physical vari-
able z (also a vector).
y° SSM/I brightness temperature observations.
n  SSM/I instrumental noise.
P generic probability measure.

P,(n) probability distribution function of 7.
P.(¢) probability distribution function of €.
H(z) derivative of y with respect to z.
A(z) covariance matrix of retrieval error estimates in
variational assimilation method.
B =< ¢€t e >, covariance matrix of the first guess
€rTors.
E =< n'-n >, covariance matrix of the measure-

ment errors.
I covariance matrix of the radiative transfer model
errors.
expectation operator.
a; activity of neuron 1.
o sigmoid function of the neural network.
z; output of the neuron %.

w;; synaptic weight between neuron ¢ and neuron 7.

gw neural network model, or transfer function for
our application.

W = {wi;}, the set of the parameters of the neural

network.

y; neural network input value on neuron 4.

zp neural network output value on neuron k.

B data set sampling the probability distribution
functions.

D  generic distance.

Dg Euclidean distance.

C1(W) theoretical quality criterion for classical neural
network learning phase.

C1 (W) practical quality criterion for classical neural net-
work learning phase.

Co(W)  theoretical quality criterion for classical neu-
ral network learning phase with first guess
information.

Cy (W) practical quality criterion for classical neural net-
work learning phase with first guess information.
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